Consider the following pattern:

$$
1+2+3+4+5=15
$$

$(-15)+(-14)+(-13)+(-12)+(-11)=-65$
$(-3)+(-2)+(-1)+0+1=-5$
What conjecture can you make from these three examples?
When you add up 5 consecutive integers... what do we get?

Try some of your own examples: (remember, variety is good)

$170+171+172+173+174=860$
$25+26+27+28+29=135$
What conjecture can you make from these three examples? When you add up 5 consecutive integers... what do we get? A multiple of 5

This is your conjecture! How do you know for sure it is always true so that you can generalize
"EVERY time you add 5 consecutive integers, you get a multiple of 5 "

We have provided 5 examples and we may feel fairly confident that our conjecture is always true

BUT remember that inductive reasoning (support by evidence and examples) cannot prove a conjecture

We can actually PROVE our conjecture by deductive reasoning

We have provided 5 examples and we may feel fairly confident that our conjecture is always true

BUT remember that inductive reasoning (support by evidence and examples) cannot prove a conjecture

We can actually PROVE our conjecture by deductive reasoning

A mathematical proof using deductive reasoning is based on claims and assumptions that are verified to be always TRUE along the way

Proof for: The sum of 5 consecutive integers is a multiple of 5

Proof for: The sum of 5 consecutive integers is a multiple of 5

1. Let x represent the median of the 5 numbers
2. We can rewrite the LEFT side to be and set it to S :

$$
(x-2)+(x-1)+x+(x+1)+(x+2)=S
$$

3. We simplify the equation:

$$
\begin{gathered}
x-2+x-1+x+x+1+x+2=S \\
5 x-2-1+1+2=S \\
5 x=S
\end{gathered}
$$

We have determined that the sum S is 5 times the median so Therefore, the sum S is a multiple of 5 .

Organizing proofs using the TWO Column method

Conjecture: When two straight lines intersect, the opposite angles are equal to each other.

| Claim | Justification |
| :--- | :--- | :--- |
| 1. $\mathrm{AEB}+\mathrm{AEC}=180^{\circ}$ | supplementary angles |
| 2. $\mathrm{AEB}=180^{\circ}-\mathrm{AEC}$ | algebraic subtraction |
| 3. $\mathrm{CED}+\mathrm{AEC}=180^{\circ}$ | supplementary angles |
| 4. $\mathrm{CED}=180^{\circ}-\mathrm{AEC}$ | algebraic subtraction |
| $\mathrm{AEB}=\mathrm{CED}$ | The conjecture states that |
| transitive property (if $\mathrm{A}=\mathrm{B}$ and $\mathrm{C}=\mathrm{B}$ then $\mathrm{A}=\mathrm{C}$) | |

