Scale Diagrams

-- Have correct proportions (reflects reality)
-- Useful because the diagram can be measured
-- Scale factors provide the relationship Between the map and reality:

Example $1 \mathrm{~cm}: 2 \mathrm{~m}$

15 cm on a map would mean (15)(2) $=30 \mathrm{~m}$

Example: We are renovating a bedroom by

 -- replacing the baseboards (goes around the room where the wall meets the floor)-- installing new flooring

We obtain the plans for the room

Scale Factor $\quad 1 \mathrm{~cm}: 2 \mathrm{ft}$

How long of a baseboard material Do we need to buy?

Perimeter: $5+1+5+6+10+7=34 \mathrm{~cm}$
In reality: $(34)(2)=68 \mathrm{ft}$

Example: We are renovating a bedroom by -- replacing the baseboards -- installing new flooring

If we want the same room layout and proportion but bigger, We can increase the scale factor by adding 3 ft What does that do to the perimeter?

Example: We are renovating a bedroom by -- replacing the baseboards
 -- installing new flooring

How much flooring do we buy?

Scale Factor $\quad 1 \mathrm{~cm}: 2 \mathrm{ft}$
Area: Cut off top $5 \times 1=5 \mathrm{~cm}^{2}$ rest $10 \times 6=60 \mathrm{~cm}^{2}$ total $60+5=65 \mathrm{~cm}^{2}$
In reality: (65)(4) = 260ft ${ }^{\mathbf{2}}$

Example: We are renovating a bedroom by -- replacing the baseboards -- installing new flooring

How much flooring do we buy for the big room?

Example: We are renovating a bedroom by -- replacing the baseboards -- installing new flooring
 How much bigger did the room get in area?

Scale Factor $\quad 1 \mathrm{~cm}: 5 \mathrm{ft}$

Scale Factor $\quad 1 \mathrm{~cm}: 5 \mathrm{ft}$
Area of small room: 260ft ${ }^{\mathbf{2}}$

Area of big room: $(65)(25)=1625 \mathrm{ft}^{2}$
Difference: $1625-260=1365 \mathrm{ft}^{2}$
Where does the 1365 come from?

The scale factor increased by 3...
We multiply the diagram area by 9 (square units)

Example: Consider the following scale Diagram and determine the Perimeter And Area in reality

Scale Factor:
$1 \mathrm{~cm}: 3 \mathrm{ft}$

Perimeter:
Area:

$$
\begin{gathered}
9 \mathrm{~cm} \\
33 \mathrm{~cm} \rightarrow(33)(3)=99 \mathrm{ft} \\
63 \mathrm{~cm}^{2} \rightarrow(63)(9)=567 \mathrm{ft}^{2}
\end{gathered}
$$

Example: Consider the following scale Diagram and determine the Perimeter And Area in reality

If the scale factor changes to:

New Perimeter: 231 ft (from 99 ft)
New Area: (from $567 \mathrm{ft}^{2}$)

