So far, we have looked at situations that Can be represented by a system of ineqaulities
-- We have graphed the system in order to find combinations (within a region) that work for the restrictions

Example: A company manufactures two types of shoes - vans and jordans

Restrictions

-- Due to materials available, the company
Can make at most 40 pairs of vans and 60 pairs of jordans per day -- it costs \$8 to make a pair of vans -- it costs \$12 to make a pair of jordans -- the company has a quota of making at least 70 pairs of shoes per day

We create our variables:

NOTE: The costs of making each is not important yet, we want to create a system for the manufacturing numbers

v - \# of pairs of vans manufactured j - \# of pairs of jordans manufactured

This cuts off the number of jordans
NOTE: Use the [$\mathrm{Y}=$] to graph the horizontal line

We create our variables:

Now, we can look at the other restriction on the QUOTA

-- the company has a quota of making at least 70 pairs of shoes per day

Pairs manufactured >= Quota
$j+v>=70$
j >= -v+70

The shaded region is our solution set; as we move the point around, it represents different types of solutions

Most companies would like to maximize profits; we will do this by minimizing costs
 -- it costs $\$ 8$ to make a pair of vans
 -- it costs $\$ 12$ to make a pair of jordans

This adds a new goal for us (it is not a restriction because it does not prevent a solution from working... the cost just changes when you move the solution around)

We call this the OBJECTIVE function (goal)

$$
C=8 v+12 j
$$

We pick a solution:

We choose the top left corner:
We use the [INTERSECT] to find
$v=10$
$j=60$

We calculate the COST of this solution
$C=8(10)+12(60)$
$C=80+720$
$\mathrm{C}=\mathbf{\$ 8 0 0}$
We choose a second solution at
$V=29$
$\mathrm{J}=53$
$C=8(29)+12(53)$
$\mathrm{C}=232+636$
C = \$868

We choose a third solution by moving It down
$v=29$
$j=40$
$C=8(29)+12(40)$
$C=232+480$
C = \$712

