Optimization

-- Determining objective functions is different than restrictions to the system

Optimization

-- Example: Find the solution that maximizes the x value

Example: You are creating a basket of fruit

-- Each basket contains at least 5 apples and at least 6 oranges
-- Apples cost \$0.20 each / oranges \$0.35 each
-- The budget allows no more than \$7.00
-- What combination of apples and oranges will result in the maximum number of pieces of fruit
(This is the objective / optimization - same thing)

Example: You are creating a basket of fruit

-- Each basket contains at least 5 apples
and at least 6 oranges
$\mathrm{a}=$ number of apples in the basket
$o=$ number of oranges in the basket
-- Apples cost $\$ 0.20$ each / oranges $\$ 0.35$ each
-- The budget allows no more than \$7.00
-- What combination of apples and oranges will result in the maximum number of pieces of fruit

Objective Function =a+o

Example: You are creating a basket of fruit

-- Each basket contains at least 5 apples and at least 6 oranges

$$
\begin{aligned}
& a>=5 \\
& o>=6
\end{aligned}
$$

-- Apples cost $\$ 0.20$ each / oranges $\$ 0.35$ each
-- The budget allows no more than \$7.00

$$
\begin{gathered}
\text { Basket cost <= budget } \\
0.20 a+0.35 o<=7.00
\end{gathered}
$$

a
NOTE: The OPTIMAL
Solution to your objective Will most likely be at a CORNER
-- What combination of apples and oranges will result in the maximum number of pieces of fruit
(This is the objective / optimization - same thing)

