When police officers use radar to catch speeding vehicles, a signal is sent straight and returned back to the radar

180-90-35 to get the missing angle (car) Use sine law

OR we could use the Cosine relationship
Cosine(35) $=0.7$--> the adjacent (reading) Is 70% of the actual speed

If we increase the angle to 70° then
Cosine(70) $=0.34$--> the adjacent (reading)
Is 34% of the actual speed

$60 / 0.34=177 \mathbf{k m} / \mathrm{h}$ actual

Solve for the unknown using SINE law

$$
60 \text { (} \begin{aligned}
& \text { There is NO way we can get the TWO } \\
& \text { unknown sides... so we don't have enough } \\
& \text { information to use the SINE Law } \\
& \text { We introduce the COSINE Law }
\end{aligned}
$$

Solve for the unknown using SINE law

COSINE Law: For any triangle A,B,C

$$
a^{2}=b^{2}+c^{2}-2 b c^{*} \cos (A)
$$

